If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7v^2+15v+2=0
a = 7; b = 15; c = +2;
Δ = b2-4ac
Δ = 152-4·7·2
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-13}{2*7}=\frac{-28}{14} =-2 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+13}{2*7}=\frac{-2}{14} =-1/7 $
| -20+x=10x-3(3x+1) | | 16.2-−3k=−1k+9 | | 5(2b+22)+(11b−8)=0 | | 2x•4=7x-5/7 | | 3/2x+3/4=1/12+4/3x | | 2-(6x+2)=8-x | | 6(2x+4)=4(4x+6) | | -84=4(6b-1)-4b | | x-0.23x=498.19 | | -4(1+5m)=-20-4m | | 2x2+7x-490=0 | | |x+4|-5=4 | | t+12.1=-5.6 | | x-1/2-3=x-4/3 | | -0.46b=5.2 | | |10+10x|+5=125 | | 6n-31=-n+8(n-3) | | (x+4)(x+3)=(x+1)(x+5) | | 3(x+5)=6-4(x+4) | | F=4.5x1.6x10^-19x2.4x10^5 | | (x-9)^2=4 | | 2(s+1)+5=7s+1/3 | | 3+4x=-3+6x | | 2(s-5)=2(s/5) | | 4-(4•2-9)=a | | 9s-2=5s+10/3 | | 57/8=x-45/8 | | 6=1/5w+7/5-4 | | -15=-5/3u | | x+8/3x=77 | | 3/4=1/8b | | |5x+|8=x |